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A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the
electron of frequency ma and strength ∼(few)×10−32 e-cm, two orders of magnitude above the nu-
cleon, and within a few orders of magnitude of the present standard model constant limit. We give a
detailed study of this phenomenon via the interaction of the cosmic axion, through the electromag-
netic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ta(t) ∝ ma → 0. The
analysis is subtle, and we find the general form of the action involves a local contact interaction and
a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling
limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism,
and in Georgi’s heavy quark formalism adapted to the “heavy electron” (me >> ma). We compute
the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic
axion field, and discuss experimental configurations that may yield a detectable signal.

PACS numbers: 14.80.Va,14.60.Cd

I. INTRODUCTION

In the present paper we give a detailed study of the in-
teraction of the cosmic axion through the electromagnetic
anomaly, with the magnetic dipole field of an electron.
For an oscillating cosmic axion field, we show that the
electron acquires an effective oscillating electric dipole
moment (OEDM). Our detailed analysis is subtle, and
amplifies the result of our previous note [1]. The anal-
ysis is perturbative, and is treated both classically and
quantum mechanically. Not surprisingly, we find that the
OEDM displays subtleties that are shared with the axial
anomaly itself.

We’ll assume that the axion fills the vacuum as a clas-
sical coherent field, oscillating in a given frame with fre-
quency ma, and may be associated with dark matter, as
per the model in [2]. We will be interested in the ef-
fect upon magnetic objects that are essentially at rest
relative to the axion cosmic rest-frame. The axion field
is designated as θ(t) = a(t)/fa where a is the canoni-
cally normalized axion field and fa the decay constant.
The cosmic axion field is then θ(t) = θ0 cos(mat) where
ma ∼ mπfπ/fa is the axion mass.

A simple hand-waving argument can be given for the
existence of induced OEDM’s arising from magnetic mo-
ments immersed in a cosmic axion field. Witten showed
that a θ-angle in QED will cause magnetic monopoles to
acquire electric charges proportional to θ, i.e., they be-
come “dyons” [3, 4]. If we thus consider a pair of dyon
and anti-dyon, separated in space by a very small dis-
tance, we will have both a magnetic and an electric dipole
moment where the electric dipole moment is equal to the
magnetic moment times θ. At very large distances we
cannot, for all practical purposes, discern the presence
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or otherwise of the underlying magnetic monopoles, but
the electric and magnetic dipole fields persist. A cosmic
axion filling space is essentially an oscillating θ-angle, and
we might expect by this argument, therefore, an OEDM
proportional to θ(t).
An OEDM is indeed induced for the electron by the

Feynman diagram of Fig.(1) where the solid dot vertex
is the anomalous coupling of the axion to electromag-
netic fields. Our result can be written as an effective
interaction for the non-relativistic electron in the zero
electron–recoil limit, with a time dependent electric field

(e.g., radiation or a cavity mode) as:
∫
d4x 2gaθ(t) µBohr χ

†
−→σ
2
χ(x) · −→E (x, t) (1)

where ga is the axion-γ-γ anomaly coefficient (defined

below), µBohr the Bohr magneton, and
−→
E (x, t) is an ex-

ternal radiative electric field. The induced effective os-
cillating electric dipole moment is proportional to the
magnetic moment, de ≈ 2gaθ0 cos(mat)µBohr ≈ 3.2 ×
10−32(ga/10

−3) cos(mat) e-cm. We use the term, “effec-
tive,” because this arises at the level of a one-particle re-
ducible Feynman diagram. Note that Eq.(1) is the limit
of the action in the case of source-free, time dependent
(radiation) fields, and one cannot naively take the limit
θ(t) → (constant) without including the nonlocal terms
in the full action, as in Eqs.(29), (30).
Previously, an OEDM has only been considered to be

specific to baryons. It arises, not by the electromagnetic
anomaly, but rather directly via the QCD-induced ax-
ion potential. The magnetic moment of the electron is
much larger than that of the nucleon, and hence the
axion-induced oscillating electric dipole moment is al-
most three orders of magnitude larger than that of the
nucleon. Since the current best limit upon any DC el-
ementary particle EDM is that of the electron, of order
de ≤ 8.7 × 10−29 e-cm, [5], the electron may provide a
promising place to search for an oscillating EDM.
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While the OEDM appears above to be proportional
to θ(t), there is, however, a catch: In the limit that
∂tθ(t) → 0 (decoupling limit) the perturbative Feynman
diagrams involving the anomaly must vanish. But how
do we reconcile decoupling, i.e., derivative coupling of
the axion, from a hard dependence upon θ(t)?

The decoupling of the axion at zero mass is subtle.
We will see presently that a nontrivial nonlocal term is
generated by Fig.(1) that enforces the decoupling. This
nonlocality is remniscent of the “transverse current” that
arises in radiation gauge quantization of QED (see, e.g.,
section 6.3 of ref.[6]). The nonlocal term insures that
the action, S(θ, Fµν , ...) can be brought to the form
S′(∂µθ, Aν , ...)+(total divergence), where Fµν = ∂[µAν].
This is a subtle property shared with the anomaly it-
self whereby the manifestly gauge invariant form of S
does not display the axion derivative coupling. However,
upon integration by parts we can display the derivative
coupling of the axion, as in S′, while relinquishing mani-
fest gauge invariance. Since these actions are equivalent
up to a total divergence, both the shift symmetry of the
axion and the gauge invariance of QED remain valid in
perturbation theory. Displaying the action as in S and
taking the zero recoil limit of the electron, which is kine-
matically valid in the me >> ma limit, we obtain eq.(1).
The price we pay for this symmetry is the nonlocality of
the effective EDM action of the electron. The structure
of the action is, however, determined completely by this
symmetry, as we discuss in Section(III).

Indeed, nonlocality arises even in the familiar case of
a classical axion induced RF cavity mode. There, the in-

duced electric field in the cavity,
−→
E (t) satisfies a similar

condition,
−→
E (t) =

−→
E (t0) + c(θ(t)− θ(t0)). This happens

simply because
−→
E (t) is governed by a first order inho-

mogeneous differential Maxwell equation and requires a
boundary condition. As we’ll see, the particular solu-
tion of Maxwell’s equations for an induced electric field
in a static background magnetic field is of fundamental
importance in axion electrodynamics and drives most of
the interesting phenomena. Modulo this subtlety, the ex-
plicit calculation of the Feynman diagram as in Fig.(1)
nontrivially confirms the argument based upon Witten’s
dyons. The full calculations simultaneously provides con-
sistency with decoupling via the nonlocal term.

We begin by giving a detailed derivation of the ef-
fective action of the electron OEDM in Section(II). We
consider both the non-relativistic Pauli-Schroedinger for-
malism for a resting electron, and also Georgi’s covari-
ant heavy quark formalism for electron of 4-velocity vµ
[7]. The latter formalism is adapted to the electron,
which may be viewed as ultra-heavy in comparison to
ma, and shows that the resulting interaction is of the
form ∝ θ(t)ψvσµνγ

5ψvF
µν for ψv = (1 + v/ )ψ/2, with

4-velocity vµ. The results are consistent, and reveal the
full effective action with the nonlocal term.

In Section III.A we show that the structure of the ac-

tion with the nonlocal term is completely determined
by the axion decoupling, i.e., by the shift symmetry,
a/fa → a/fa + φ, which is maintained in perturbation
theory. While the physical effective action of the OEDM
is consistent with the a/fa → a/fa + φ symmetry, we
emphasize that there are no additional suppressions in-
volving higher powers of ma, i.e., our OEDM physics is
on par with the induced oscillating electric field in an RF
cavity experiment. In Section III.(B,C), we observe how
this nonlocality arises in well-known solutions to, e.g.,
the RF cavity experiments.
To further probe this phenomenon, we show explicitly

in Section IV that the classical Maxwell equations for
a localized magnetic dipole, such as an electron in free
space, leads to the emission of electric dipole radiation,
i.e., the classical radiation field from a stationary elec-
tron is that of a Hertzian electric dipole radiator. The
classical calculation is compared to the quantum calcula-
tion, and they are found to be consistent. Large magnetic
fields imbedded in conductors likewise provide a source
for such axion induced electric dipole radiation.
In Section V we consider a possible experimental con-

figuration for detection of this radiation based upon an
array. This is a broadband simple radiator, and can be
viewed as an array of high field magnets, or as a planar
slab of conductor with a large magnetic field imbedded
in the plane of the conductor. This can produce power
output of upwards of order ∼ 10−24 watts and appears
to be detectable radiometrically. The main advantage
over RF cavity experiments is that broad-band radiators
do not require resonant tuning. We are encouraged
by the simple estimates of the signal integration that we
provide that this may lead to detactability, even in the
challenging range 1012 ≥ fa ≥ 1010 GeV, or short axion
wavelength. We note that there are several papers that
touch on these and related ideas, e.g., [8], [9], and [10].

Let us recall some basic concepts. The axion is a
hypothetical, low–mass pseudo-Nambu-Goldstone boson
(PNGB) that offers a solution to the strong CP prob-
lem of the standard model, and simultaneously provides
a compelling dark matter candidate. The expected mass
scale of the axion is ma ≈ m2

π/fa where typical expected
values of the decay constant fa range from ∼ 1010 GeV
upwards [11–13].
The axion is expected to have an anomalous coupling

to the electromagnetic field
−→
E · −→B, taking the form:

ga
4

∫
d4x

(
a

fa

)
Fµν F̃

µν = −ga
∫
d4x

(
a

fa

)−→
E ·−→B (2)

where F̃µν = (1/2)ǫµνρσF
ρσ, and ga is the dimensionless

anomaly coefficient. In various models we have [14–16]:

ga ≈ 8.3× 10−4 DFSZ

ga ≈ −2.3× 10−3 KSVZ (3)

In making quantitative estimates in Section V. we will
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FIG. 1: Feynman diagram for axion induced electric dipole

moment. Solid dot is the axion anomaly interaction, θ
−→
E ·

−→
B .

The dashed line is the incoming axion field, θ. The solid line is
the electron, where the electron-photon vertex is the magnetic
dipole moment operator of the electron.

use the KSVZ result (see Section V, in particular Table
I, for a listing of our preferred parameters).
Most strategies for detecting the cosmic axion ex-

ploit the electromagnetic anomaly [17–19] together with
the assumption of a coherent galactic dark-matter back-
ground field [2], a/fa ≡ θ(t) = θ0 cos(mat). In typi-
cal RF cavity experiments such as ADMX, one applies
a large external constant magnetic field to the cavity,−→
B 0 (it suffices to apply this field only in the conducting
walls of the cavity), and the anomalous coupling to θ(t)

induces an oscillating electromagnetic response field,
−→
E r

and
−→
B r. The “cavity modes” can become excited, which

can generate a resonant signal in the cavity. This offers
the possibility of both detecting the existence of the ax-
ion and simultaneously establishing that it is a significant
component of dark-matter. We briefly discuss, for sake
of comparison, the energetics of RF in Section III.C, and
quantitatively in Section V.
Recently several authors have considered alternative

modes of axion detection [20–22], in particular, the pos-
sibility of observing an OEDM for the nucleons. In-
deed, a small oscillating electric dipole moment for the
nucleons is predicted with a frequency ma given by
dN ∼ 10−16θ(t) ≈ 3.67× 10−35 cos(mat) e-cm [21]. Thus
far, this effect has only been considered to be specific to
baryons. It arises, not by the electromagnetic anomaly
∝ ga, but rather directly via the QCD-induced axion po-
tential.
The axion induced magnetic moment of the electron

is about two orders of magnitude larger than that of the
nucleon. Since the current best limit upon any DC el-
ementary particle EDM is that of the electron, of order
de ≤ 8.7× 10−29 e-cm, [5], the electron may be a promis-
ing place to search for an oscillating EDM and the axion
itself.

II. FEYNMAN DIAGRAM ANALYSIS OF

INDUCED OEDM OF THE ELECTRON

A. Nonrelativistic Pauli-Schroedinger Action

We compute the axion induced OEDM of the electron.
We go to the electron rest frame which we assume to also
be the rest frame of the cosmic axion field, i.e., the frame
in which the axion field oscillates in time with no spa-
tial dependence, a/f = θ0 cos(mat). We use the Pauli-
Schroedinger formalism, then follow with an analysis in
Georgi’s heavy fermion formalism.
The Pauli-Schroedinger Lagrangian is, of course, the

first order Dirac action in an expansion in 1/me, and
takes the form:

1

2m
ψ†−→σ ·

(
i
−→
∂ − e

−→
A
)−→σ ·

(
i
−→
∂ − e

−→
A
)
ψ (4)

where ψ is a two-component spinor. Eq.(4) contains the
term:

− 1

2m
ψ†−→σ ·

(
i
−→
∂
)−→σ ·

(
e
−→
A
)
ψ ⊃ − ie

2m
ψ†ǫijkσkψ∂iAj

(5)

having used σiσj = δij + iǫijkσk. This is the standard

magnetic dipole interaction, − ige
2mψ

† ~σ
2ψ · ~B with g = 2.

Consider the time-ordered product of i× the magnetic
dipole action with i× the axion anomaly action:

−(i)2T

∫
d4x

ie

2m
ψ†ǫijk∂iAjσkψ

×ga
2

∫
d4yθǫαβγρ∂αAβ∂γAρ (6)

Assuming θ has only time dependence, and integrating
the anomaly by parts in time we have

iT
ega
4m

∫
d4x ψ†ǫijkσkψ∂iAj

∫
d4y(∂0θ)ǫlmnAl∂mAn

(7)

Note that this forces us into radiation gauge, as a
Coulomb term would be ∼ θǫlmn∂lφ∂mAn and upon in-
tegration by parts we would have ∼ −∂lθǫlmnφ∂mAn,
which vanishes by the hypothesis that the axion field de-
pends only upon time.
Contracting the vector potential from the magnetic

dipole interaction with either vector potential in the
anomaly yields:

ega
2m

∫
d4y

∫
d4x ψ(x)†ǫijkσkψ(x)

×∂iG(x− y)∂0θ(y
0)ǫjmn∂mAn(y) (8)

where we’ve included a 2× combinatorial factor. Here we
use the covariant Feynman propagator of the photon,

i

(
gµν − λ

∂µ∂ν
∂2

)
G(x − y) → −iδijG(x− y);

G(x− y) = −
∫

d4k

(2π)4
eik·(x−y)

k2 + iǫ
(9)
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since only the spatial terms are relevant and the gauge
dependent terms, ∝ λ, are seen to cancel owing to anti-
symmetries (see ref.[1]). Our sign conventions and nor-
malization are consistent with ref.[23], where we have
∂2G(x− y) = δ4(x − y).
Using, ǫijkǫjmn = −δimδkn + δinδkm, we can write:

= −ega
2m

∫
d4y

∫
d4x ψ†σkψ(x)

× ∂iG(x − y)∂0θ(y
0) (∂iAk(y)− ∂kAi(y))

(10)

Note that the result of eq.(8) is manifestly proportional
to ∂0θ and therefore the axion is derivatively coupled up
a total divergence. However, when displayed in this form
we do not see the manifest gauge invariance. This issue
is addressed in detail in Section III.
We assume that the electron is in a common rest frame

with the axion. To a good approximation the electron
operator is static, i.e., ∂0(ψ

†σkψ) = 0 + O(1/m). since
the electron mass is enormous compared to the relevant
momentum exchange, me >> ma. The electron can
therefore absorb this tiny momentum without apprecia-
bly changing its energy.
We can therefore integrate the time derivative by parts,

and drop ∂y0G(x − y) terms. We can also integrate the
spatial derivative ∂yk

by parts, and note the transla-
tional invariance of the propagator implies, ∂yG(x−y) =
−∂xG(x − y). This yields:

=
ega
2m

∫
d4y

∫
d4x ψ†σkψ(x)∇2

xG(x − y)θ (∂0Ak(y))

−ega
2m

∫
d4y

∫
d4x ψ†σkψ(x)∂kG(x − y)θ (∂i∂0Ai(y))

(11)

where ∇2 = ∂k∂k. Using the definition of the electric
field in radiation gauge, Ei = −∂0Ai, the static electron
field permits us to integrate over x0,

∫
dx0 ∇2G(x−y) =

δ3(x − y). We obtain the effective action (we have re-
moved the i):

=
iega
2m

[∫
d4x ψ†σkψ θ(t)Ek(x)

+

∫
d4y

∫
d4x ∂kψ

†σkψ(x) G(x− y)θ(y0)∂iEi(y)

]

(12)

The result we have obtained contains the local contact
interaction, which is a conventional electric dipole form
proportional to θ(t). It also contains a nonlocal compo-
nent. If we choose to immerse the electron in a source
free field, such as an RF cavity mode or light, then
∂iEi(y) = 0 and only the contact term remains.
We have written this expression in a manifestly gauge

invariant form, and therefore we display the axion field
without a derivative. Integration by parts, as in the
general argument of Section III, shows that the axion

is derivatively coupled. Our interaction behaves like the
anomaly itself in its display of manifest gauge invariance
vs manifest shift invariance..

B. Georgi’s Heavy Quark Effective Theory Applied

to the Electron

The previous analysis relied upon the non-recoil ap-
proximation of the electron, which is justified since
me >> ma. This limit implies that the 4-velocity of
the electron is approximately conserved in its interac-
tions with the comoving axion field. A more “covariant”
representation can be derived, however, by using Georgi’s
heavy quark effective field theory formalism [7]. We ob-
tain the same basic structure as in the Pauli-Schroedinger
case, but formulae involving the electric dipole moment
will become the more familiar relativistic forms.
We begin by defining heavy electron Dirac fields with

fixed 4-velocity, vµ:

ψ →
(
1 + v/

2

)
ψ = ψv ψ → ψ

(
1 + v/

2

)
= ψv (13)

The Dirac magnetic moment operator then takes the
form:

− ie

4m
ψvσµνψvF

µν = − ie

2m
ψv (γ5ǫαβργγ

ρvγ)ψv∂
αAβ

(14)
where the axion field is θ = θ0 cos(mavµx

µ).
We again compute the time ordered product of i× the

magnetic dipole action with i× the axion anomaly action:

−(i)2T
iega
4m

∫
d4xψv(x) (γ5ǫαβργγ

ρvγ)ψv(x)∂
αAβ(x)

×
∫
d4yθ(y)ǫηκωρ∂ηAκ(y)∂ωAρ(y)

= −ega
2m

∫
d4y

∫
d4xψv(x) (γ5ǫαβργγ

ρvγ)ψv(x)

×∂αG(x − y)
(
∂ηθ(y)ǫ

ηβωρ∂ωAρ(y)
)

(15)

Note again that propagator gauge terms do not con-
tribute owing the the ǫ-symbols. We now relabel, per-
mute, and use the identities:

ǫαβγρǫ
αηωδ = −

(
gηβg

ω
γ g

δ
ρ + (−1)p(permutations)

)
(16)

and:

− iψvγ
5σαβψv = ψv

(
γ5γαvβ − γ5γβvα

)
ψv (17)

Note that we can integrate by parts and rearrange, to
obtain:

=
iega
2m

∫
d4y

∫
d4x ψvγ5σ

ργψv

[
∂2G(x− y)(∂ρθ)Aγ

+∂β∂γG(x − y) ((∂βθ)Aρ − (∂ρθ)Aβ)
]

(18)
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This form displays the manifest derivative coupling of the
axion, but not manifest gauge invariance.
Alternatively, we can manipulate eq.(15), using

∂2G(x) = δ4(x), and multiplying by −i to obtain the
action:

= −ega
4m

∫
d4x ψv (γ5σργ)ψvθF

ργ

− ega
2m

∫
d4y

∫
d4x ∂ρ(ψv (γ5σργ)ψv(x))

×G(x− y)∂β [θ(y)F
γβ(y)] (19)

Here we have displayed manifest gauge invariance, while
the derivative coupling of the axion is not manifest. We
emphasize that eq.(19) and eq.(18) are equivalent up to
surface terms. Note that in eq.(19) we see the famil-
iar covariant EDM operators in the heavy quark fields:
ψv (γ5σργ)ψv(x) .
To compare the Georgi calculation result to the Pauli-

Schroedinger case we go to rest frame vi → 0, and care-
fully note sign conventions in ref.[23]:

−ega
4m

∫
d4xψvγ

5σαβψv

(
θFαβ

)

→ iega
2m

∫
d4xψ†σiψ (θEi) (20)

and:

−ega
2m

∫
d4y

∫
d4x∂βψv (γ5σβρ)ψv ·

G(x− y)∂γ [θ(y)F
ργ(y)]

→ iega
2m

∫
d4y

∫
d4x ∂i

(
ψ
†
σiψ(x)

)

G(x− y) · (θ∂jEj(y)) (21)

where the latter spinors (without subscript, v) are two-
component spinors. These expressions are equivalent to
eq.(12). The result of eq.(19) is somewhat more general
than eq.(12), the latter refering to the frame with electron
and axion both having 4-velocity vµ.

III. ANOMALIES, OEDM’S, AND AXION

DECOUPLING

A. The General Form of the Action

Presently we give a general argument as to why the
nonlocal term occurs, and we will derive the general
structure of the action by simply demanding the shift-
symmetry of the axion.
The effect we are discussing arises perturbatively, from

the interaction of the axion anomaly with a magnetic
moment and therefore it must share subtleties with the
anomaly itself. The anomalous interaction of the axion
with electromagnetic fields is written in eq.(2):

ga
2
ǫµνρσ

∫
d4x θ(x)FµνF ρσ (22)

where θ(x) = a(x)/fa .
We can perform a transformation that shifts the axion

as θ → θ + φ where φ is an arbitrary angle. If φ is con-
stant the theory is invariant under this shift, since the
anomaly only causes the action of eq.(22) to shift by a
total divergence, which has no effect in perturbation the-
ory (a total divergence, or “surface term,” is ∝ the total
incoming momentum less the total outgoing momentum
of the Feynman diagram). Therefore, we conclude, a/fa
must be derivatively coupled in any perturbative process.
We see this in eq.(22) if we integrate by parts and

write:

− gaǫµνρσ

∫
d4x ∂µθ(t)AνF ρσ (23)

whereAµ is the vector potential, and Fµν = ∂µAν−∂νAµ.
Eq.(23) displays the derivative coupling of the axion,
however the manifest gauge invariance of electromag-
netism is lost. Alternatively, eq.(22) maintains the gauge
invariance of QED, but does not display the U(1)PQ

“shift” symmetry of the pNGB. Both symmetries are
present in perturbation theory since eq.(22) and eq.(23)
differ only by surface terms. We observed in Section II
that this feature is shared by the Feynman diagram that
generates a perturbatively induced OEDM.
We generally define the covariant OEDM of the elec-

tron (or similarly for any other object) in an arbitrary
frame in which the cosmic axion field has four-velocity
uµ, i.e., θ(x) = θ0 cos(uµx

µ), as:

S′ = g′
∫
d4x θ(x)SµνF

µν (24)

where Sµν is an antisymmetric odd parity dipole density

(S0
µν ∼ ψσµνγ

5ψ; Sµν will be defined in terms of S0
µν

momentarily).
Since this result arises perturbatively from the

anomaly, it must have the shift symmetry in common
with the anomaly. In particular we must be able to move
a derivative exclusively onto θ via integration by parts:

S′ = −2g′
∫
d4x ∂µθ(x)SµνA

ν (25)

We see that the gauge field, Aµ, now appears explicitly,
exactly as happens in the case of the anomaly itself.
However, in order for eq.(25) to be valid, a constraint

must be satisfied:

∂µSµν = 0 (26)

A general solution to this constraint can be written as a
nonlocal form:

Sµν = S0
µν(x) +

∫
d4y ∂[µG(x− y)∂λS0

ν]λ(y) (27)

(note antisymmetrization in µ and ν). Eq.(26) satisfies
∂µSµν = 0 for any antisymmetric S0

µν , where the Green’s
function satisfies:

∂2G(x − y) = δ4(x− y) (28)
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and G(x − y) is as defined in eq.(9).
The action with eq.(27) thus becomes;

S′ = g′
∫
d4x d4y θ(x)Fµν (x)

×
[
S0
µν(x)δ

4(x− y) + ∂[µG(x − y)∂λS0
ν]λ(y)

]
(29)

and S0
µν = ψσµνγ

5ψ is local. We can transpose the inte-
grand, using ∂xG(x− y) = −∂yG(x− y) and performing
integrations by parts in y, to obtain:

S′ = g′
∫
d4x θ(x)S0

µν (x)F
µν

+2

∫
d4x

∫
d4y S0

ρν(x)G(x − y)∂ρ∂[µ(θ(y)F ν]
µ (y))(30)

This is seen to be equivalent, e.g., to the Georgi formal-
ism result of eq.(19) after an integration by parts, where
we have g′ = ega/4m and S0

µν = ψvγ5σµνψv. The role
of the nonlocal term is therefore to maintain the shift
symmetry of the axion.
The nonlocal term reduces further in certian limits. In

the limit of a constant θ(x) we have ∂µ(θ(y)F ν
µ (y)) =

θ∂µF ν
µ (y) = j ν(y), where jν(y) is a source current for

the electromagnetic field. Since ∂2G = δ, the vector
potential is given by:

Aµ(x) =

∫
d4y G(x − y)jµ(y) (31)

Hence, for constant θ:

S′ →
∫
θSµνF

µν −
∫
θSµνF

µν = 0 (32)

which is the simplest statement of decoupling.
We can also consider a static limit for the electron in

which:
∫
dy0 G(x− y) =

∫
d3~k

(2π)3
e−i~k·(~x−~y)

~k2

=
1

4π

1

|~x− ~y| ≡ − 1

~∇2
(33)

where ~∇2(1/R) = −4πδ3(R) (e.g, see [6] section 6.4).
We find by explicit calculation of Fig.(1) that S0

µν is the

a local electric dipole density operator, ∝ iψγ5σµνψ).
For a purely spatially constant but time dependent ax-

ion field, θ(t) and a nonrelativistic, static electric dipole
moment, g′S0

0i = −g′S0
i0 = 1

2Pi(x), where ∂tPi(x) = 0
this becomes:

S′ = g′
∫

d4x θ(t)

(

−→
P ·

−→
E +

−→
∇ ·

−→
P

(

1
−→
∇2

)

−→
∇ ·

−→
E

)

(34)

In an arbitrary gauge,
−→
E =

−→∇ϕ− ∂t
−→
A , we see that:

S′ = g′
∫
d4x θ(t)

−→∇ · (−→P ϕ)

+g′
∫
d4x ∂tθ(t)

(−→
P · −→A +

−→∇ · −→P
(

1
−→∇2

)−→∇ · −→A
)
(35)

Therefore, S′ becomes a total divergence in the limit
∂tθ(t) → 0. In particular, the first term is a total di-
vergence in space for a spatially constant θ(t).

In the case of a source-free electric field, ∇· ~E = 0, this
becomes:

g′
∫
d4x θ(t)

−→
P · −→E (36)

indistinguishable from a simple electric dipole moment

interaction. Because
−→
E = −∂t ~A, we can integrate this

expression by parts to write:

g′
∫
d4x ∂tθ(t)

−→
P · −→A (37)

and manifest gauge invariance is lost, just as in the case
of the anomaly when the derivative is placed on the axion
field. Eqs.(36) and (37) differ only by surface terms that
are irrelevant to perturbation theory.
Note that if the electric field has a static source, such

as an electric charge (e.g., an atomic nucleus), located

at ~x0,
−→∇ · −→E (y) = Qδ3(~y − ~x) and, ignoring the explicit

∂tθ ∼ ma terms in the nonlocal component of eq.(30),
then quasistatic action reduces to:

g′
∫
d4x (θ(t)− θ(t− |~x− ~x0|)

−→
P (x) · −→E (x) (38)

Here we see that the nonlocal term subtracts a retarded
axion field from the local value of the axion field. This
difference vanishes as ma → 0. This is the way the de-
coupling is generally maintained in solutions to Maxwell’s
equations in classical configurations, such as RF cavities,
as we see in the next few sections. This result, how-
ever, implies that the electron OEDM may be difficult
to probe in atomic experiments (such as the ACME ex-
periment, [5]) where |~x− ~x0| ∼ rBohr is the Bohr radius,
since (θ(t) − θ(t− |~x− ~x0|) ∼ marBohr << 1.
We emphasize that a nonlocal operator structure in

electrodynamics is not novel. It is encountered in the
“transverse electromagnetic current” in QED, e.g., when
we quantize in radiation gauge (see, eg, [6], section 6.3
and eq.(6.28)). In that case the nonlocal term is essen-
tial to maintain the causality of the theory in this gauge.
The transverse current occurs when we have Coulombic
sources and a nonzero, time dependent component of the
vector potantial, A0. A0 has no time derivatives in the
action and is therefore an instantaneously propagating
field, and cannot represent a physical out-going on-shell

photon. The equation of motion for A0 is ~∇2A0 = −ρ(x),
where ρ(x) is a charge density. If we want to allow time
dependent A0, then ∇2∂0A0 = −∂0ρ(x, t), but from cur-

rent conservation we have ∂0ρ = ∇ · ~j where ~j is the

3-current. Hence, we have ∂0A0 = −(1/~∇2)~∇ · ~j. This
means that if A0 is to be time dependent, then there
must necessarily be a 3-current, hence a vector poten-

tial, ~A. We impose the condition ~∇ · ~A = 0. ~A satis-

fies (∂20 − ∇2) ~A − ~∇∂0A0 = ~j (the equation of motion
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of A0 is unmodified by this). This is often written as

(∂20 − ∇2) ~A = ~jT . where ~jT is the “transverse current”

[6] which takes the form ~jT = ~j − ~∇(1/∇2)~∇ · ~j. ~jT is
identically conserved with the nonlocal term, is consis-

tent with the radiation gauge condition ~∇ · ~A = 0, and
thus gauge invariance is maintained. From this, Lorentz
invariance is also maintained.
Thus, introducing A0 time dependence requires a non-

local correction to the current to maintain a conserved
current, hence gauge invariance. This is formally simi-
lar to the structure seen in eq.(27) which maintains the
shift symmetry (analogue of gauge symmetry) of the ax-
ion. The apparent nonlocality is arising because we are
treating the “vacuum” as effectively containing a space-
time dependence, through the background cosmic classi-
cal θ(t) field. Physical amplitudes thus inherit a nonlocal
dependence upon the history of the vacuum.

B. Axion in an Infinite Volume Static Magnetic

Field and Inherent Nonlocality

The “integral form of axion decoupling,” as we have
seen above arising from the nonlocal term, is a general
feature of the solutions to the Maxwell equations in var-
ious practical situations. Suppose we have an infinite
universe which contains a uniform static magnetic field−→
B 0 and a background oscillating classical axion field,
a(t)/f ≡ θ (t) = θ0 cos (mat) (this can be considered as
an infinite volume limit of an RF cavity experiment as we

do below). We consider the sources for
−→
B 0 to be far away

from the region of interest and therefore
−→∇ × −→

B 0 = 0.
The decoupling, ma → 0 limit, becomes somewhat sub-
tle, even in this case. We can analyze this classically.
The axion anomaly will generate an electromagnetic

field of the form:
−→
E =

−→
E r and

−→
B =

−→
B 0 +

−→
B r where−→

E r and
−→
B r are oscillating “response fields.” Maxwell’s

Equations in these fields become:
Maxwell (1):

−→∇ ×−→
B r − ∂t

−→
E r = −ga

−→
B 0 (∂tθ) (39)

Maxwell (2)

−→∇ ×−→
E r + ∂t

−→
B r = 0 (40)

and
−→∇ · −→B r =

−→∇ · −→E r = 0.
The Maxwell equations are coupled first order inho-

mogeneous differential equations. They are consistent
with the decoupling of the axion as ma → 0, since the
source term is proportional to ∂tθ. The vector potential

in Coulomb gauge likewise satisfies: ∂2t
−→
A r − −→∇2−→A r =

−ga
−→
B 0 (∂tθ) where

−→
E r = −∂t

−→
A r and ∇ · −→A r = 0, a

single second order inhomogeneous differential equation.

For an infinite universe filled with the magnetic field
−→
B 0

we have translational invariance in space.

The Maxwell equations have a particular solution that
is consistent with the symmetry of spatial translational
invariance:

−→
E r = ga

−→
B 0

∫ t

0

dτ∂τ θ(τ) = ga
−→
B 0 (θ(t)− θ(t0))

−→
B r = 0 (41)

The solutions necessarily require the specification of a
single boundary condition at an inital time, which we

take to be
−→
E r(t0) = 0 and

−→
B r(t0) = 0 . We em-

phasize that this is a non-propagating solution (since−→
B r = 0) and represents a time dependent “dual rota-

tion” of
−→
B 0 → −→

E r [1].
The dependence upon the initial condition introduces

an apparent nonlocality, or “history”, into the observed−→
E r(t). Clearly

−→∇ × −→
E r = 0 hence Br = 0. Note that

the vector potential is nonlocal, satisfying

−→
A r = ga

−→
B 0

∫ t

0

dτ ′
∫ τ ′

0

dτ∂τθ(τ) (42)

Our infinite universe with a static magnetic field and an
oscillating axion field has acquired an oscillating electric
field. This is an example of a general “theorem:” Any

magnetic moment becomes an oscillating electric moment
in the presence of the oscillating axion. The magnetic
field need not be restricted to a constant all-space filling
form as in this toy universe example; it can be, e.g., the
local field surrounding a magnetic dipole moment, as we
can see classically. The effect of the axion is to produce
a time dependent electric dipole for the electron.

C. Axion Induced Electric Field in an RF Cavity

To detect a cosmic axion signal we can deploy a very

large constant, externally applied magnetic field
−→
B 0

within a resonant cavity. The solutions to the Maxwell
equations for the response fields will always involve the
same particular solution we just encountered in the toy
universe, but also now includes homogeneous solutions
that are required to implement the boundary conditions
of the cavity.
Maxwell’s equations for the reponse fields are as in

eqs.(39,40). We now have conducting boundary condi-

tions at the cavity wall, r = R:
−→
E (r = R) = 0 (and since

the form of the B-field is parallel to the cavity axis, we

have no constraint upon
−→
B (r = R)).

With cylindrical coordinates, (ρ, φ, z ), we find a cylin-
drically symmetric solution:

−→
E = (kJ0(ρma) + ga)B0θ̃ẑ

−→
B = kJ1(ρma)B0

∂tθ̃

ma
φ̂ (43)

The electric field has the form of our free space solution
proportional to gA, plus a homogeneous cavity mode so-
lution proportional to k.
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We now apply conducting boundary conditions at the

cavity wall,
−→
E (ρ = R) = 0. We thus determine k :

−→
E = −ga

(
J0(ρma)

J0(Rma)
− 1

)
B0ẑθ̃

−→
B = −ga

J1(ρma)

J0(Rma)
B0φ̂

(
∂tθ̃

ma

)
(44)

Note again that the solution vanishes asma → 0 since we

define θ̃(t) =
∫ t

t0
dτ∂τ θ(τ), where t0 is an earlier time at

which
−→
E (t0) = 0. The solutions is therefore intrinsically

nonlocal in time. Henceforth we will omit the understood
tilde on θ̃, i.e., θ → θ(t)− θ(t0).
This is an idealized solution with a perfect resonant

behavior, i.e., for a special cavity satisfying J0(Rma) =
0 the solution has an apparent infinite amplitude. Of
course, in reality the amplitude is damped by dissipation.
This results in a finite Q value, and modifies the solution
to:

−→
E = −ga

(
J0(ρma)

F
− 1

)
B0ẑθ

−→
B = −ga

J1(ρma)

F
B0φ̂

(
∂tθ

ma

)
(45)

where

F =

√
(J0(Rma))

2
+ 1/Q2 (46)

Note that the total oscillating field energy in the cav-
ity is ∝ Q2. The finite Q arises if we include a resistive
damping term in the Maxwell equations. In an idealized
perfect cavity the oscillating fields are the electric field
90o out of phase from the magnetic field, and hence a
vanishing time averaged Poynting vector. There is, how-
ever, with finite Q there is an induced, small O(1/Q),
temporal phase shift, that we have not written, such that−→
E and

−→
B are not exactly 90o out of phase. This allows

the Poynting vector at the walls of the cavity to average
to a nonzero result. Hence power is extracable at a rate
∝ Q. If we attempt to extract power at faster rate then
Q will decrease since the dominant power loss mechanism
becomes the radiative extraction itself. We will consider
some quantitative aspects of the RF cavity solution in
Section V.

IV. ELECTRIC DIPOLE RADIATION FROM A

STATIONARY ELECTRON

A. Classical Calculation

First we consider the electric dipole radiation from a
classical magnetic moment immersed in the axion field.
This calculation has validity for intense classical mag-
netic sources. It cannot be adapted to the case of an elec-
tron which requires the quantum calculation. Nonethe-
less, it is instructive to compute and compare it with the

quantum case in Section IV.B. We will see that the radi-
ation is generated by the physical OEDM. The magnetic
dipole field surrounding the source, though it appears
on the rhs of Maxwell’s equations as a source term in
the axion background, does not itself radiate. Instead,
this is associated with the non-radiating particular solu-
tion encountered in the previous section, and it allows
implementation of various boundary conditions at short
distance for the electric field.
The standard Maxwell equations with axion anomaly

source in the presence of an arbitrary static, local mag-

netic field
−→
B 0(~r) are:

Maxwell (1):

−→∇ ×−→
B r(~r, t)− ∂t

−→
E r(~r, t) = −ga

−→
B 0(~r)∂tθ(t) (47)

Maxwell (2)

−→∇ ×−→
E r(~r, t) + ∂t

−→
B r(~r, t) = 0 (48)

and
−→∇ · −→B r =

−→∇ · −→E r = 0.

Presently
−→
B 0(~r) ≡

−→∇ × −→
A 0(~r) will be the static field

of a classical solenoidal magnet, centered at the origin,

~r = 0, where
−→
A 0 can be written formally in terms of

a magnetic dipole source −→m0 = −→mδ3(−→r ), (see ref.[6],
Chapter 5.6). We have formally:

−−→∇ ×−→
B 0 =

−→∇2−→A 0 =
−→∇ ×−→m0 (49)

hence:

−→
A 0 =

1

4π

−→m ×−→r
r3

(50)

and:

−→
B 0 = − 1

4π

[
8π

3
−→mδ3(~r) +

(
1

r3

)(
−→m − 3−→r (−→r · −→m)

r2

)]

(51)
(see the magnetostatics discussion in Jackson, eqs.(5.55-
5.64) [6]; Jackson states that this is a purely classical
construction and cannot be unambiguously applied to a
quantum mechanical electron).
A subtlety arises in the present case with the particular

solution encountered in Section III. Consider a “source-
less dipole field,” i.e., one in which there is no −→mδ3(~r)
term:

B̂0 = − 1

4π

(
1

r3

)(
−→m − 3−→r (−→r · −→m)

r2

)
(52)

We consider Maxwell’s equations, replacing
−→
B 0 by B̂0 on

the rhs of eq.(47). We then have the particular solution
to the vacuum Maxwell equations:

−→
E r(~r, t) = −gaB̂0(~r)θ(t) (53)

and:

−→
B r(~r, t) = 0 (54)
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This is a solution since:

0 =
−→∇ ×

(−→m
r3

− 3
−→r (−→m · −→r )

r5

)
(55)

(note that any potential severe surface term singularity

arising here, e.g., such as in
−→∇i(rj/r

5), will be ∝ δij or
∝ rirj , but contracted with ǫijk from the cross-product,

and hence zero). However, since
−→
B r(~r, t) = 0, this is a

nonpropagating solution. It exists for any background

static magnetic field satisfying
−→∇ × −→

B 0 = 0 . We will
require incorporating this non-propagating solution into
our full radiation solution momentarily.
The existence of this solution has an important impli-

cation: The sourceless dipole field surrounding the ori-
gin, does not lead to radiation. The radiation comes only

when we have a nonzero magnetic field
−→
B 0 which curls

around a nonzero dipole source term. This is analogous
to the infinite universe with a constant magnetic field ver-
sus the RF cavity: it is the conducting wall of the cavity
that enforces the boundary condition that produces the
resonant magnetic and electric fields.
We can now solve the Maxwell equations using re-

tarded Green’s functions for a vector potential, Ar(~r, t),
describing the radiative oscillating response fields in
Coulomb gauge. The analysis mostly follows the text-
book derivations as in [6], Chapter 9, but involves the
non-propagating solution described above. In what fol-
lows, we will pass to complex notation where θ(t) =
θ0 exp(imat), and the physical response fields will be the

real parts of the complex
−→
E r and

−→
B r. The radiated elec-

tromagnetic fields
−→
B r(~r, t) and

−→
E r(~r, t) are obtained as

follows:

−→
E r(~r, t) = − 1

4π
gaθ(t) exp(−ima|−→r |)

·
(
[1− exp(ima|−→r |) + imar]

(−→m
r3

− 3
−→r (−→m · −→r )

r5

)

−m2
a

(−→m
r

−
−→r (−→m · −→r )

r3

))
(56)

and:

−→
B r(~r, t) =

1

4π
ga∂tθ(t) exp(−ima|−→r |)

· −→m ×
(−→r
r3

+
ima

−→r
r2

)

(57)

One can readily verify that eqs.(56, 57) satisfy the
Maxwell equations eqs.(47, 48) with the source term

−ga
−→
B 0(~r) (∂tθ(t)). Notice that the second term in the

brackets [...] in eq.(56) is the non-propagating solution of
eq.(53)
Taking the near-zone limit yields:

−→
E r(~r, t) → 0 (58)

which vanishes due to cancellation with the particular
solution, and:

−→
B r(~r, t) →

1

4π
gaimaθ(t)

(
−→m ×

−→r
r3

)
(59)

From the near-zone limit we can confirm the Maxwell
equations and read-off the source structure:

∇×−→
B r − ∂t

−→
E r = − 1

4π
ga∂tθ(t)

(
−8π

3
−→mδ3(−→r )

+
−→m
r3

− 3
−→r (−→m · −→r )

r5

)
(60)

Thus we see that the propagating radiation is due to
the physical OEDM source, which induces the curling
magnetic field, and is not due to the dipole magnetic
field surrounding the source.
In the far-zone we have:

−→
E r(~r, t) →

gam
2
a

4π
θ(t) exp(−ima|−→r |)

(−→m
r

−
−→r
r2

−→m · −→r
r

)

(61)

−→
B r(~r, t) → −gam

2
a

4π
θ(t) exp(−ima|−→r |)

(
−→m ×

(−→r
r2

))

(62)

These are seen to be formally equivalent to the electric
dipole radiation fields , where our magnetic moment ~m
replaces the electric moment ~p in Jackson, [6] eq.(9.18).
Hence, the source of the radiation is the axion induced
OEDM.
From this we can compute the cycle averaged Poynting

vector,
−→
K =<

−→
E r ×

−→
B r >:

−→
K =

1

32π2
g2am

4
aθ

2
0

[(−→r
r2

)(−→m2

r
− (−→m · −→r )2

r3

) ]
(63)

Using −→m = µBohr
~S, the angular differential emitted

power, P , for our classical electron is therefore given by
the classical dipole pattern ([6], eq.(9.23)):

dP

dΩ
=

1

32π2
g2am

4
aθ

2
0µ

2
Bohr sin

2 θ (64)

The total the emitted power is then:

Ptot =
1

12π
g2am

4
aθ

2
0µ

2
Bohr. (65)
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B. Quantum Calculation

The quantum calculation is straightforward, but as one
would expect is also somewhat tricky. We will summarize
it presently. From the Pauli-Schroedinger result we have
an effective action for radiation given by eq.(12):

=
iega
2m

∫
d4x ψ†σkψ θ(t)Ek(x) (66)

where we can neglect the nonlocal term since ∂iEi = 0.
The coherent axion field θ(t) = θ0

2 (e
imat + e−imat)

has both incoming, e−imat and outgoing e+imat com-
ponents, and we drop the outgoing component for the
process of conversion of an axion into a photon. Like-
wise, we replace Ei(x) = ∂0Ai(x) by an outgoing pho-

ton ik0ǫie
+ik0t−i~k·~x with polarization ~ǫ where ~ǫ · ~k = 0.

The electron is assumed to be localized in space and we

write ψ†σkψ = χ†
fσkχiδ

3(~x) for initial and final two-
component spinors χi and χf .
Consider an emission amplitude of a photon in the xz

plane (which corresponds to the polar azimuthal angle,
φ = 0; we’ll integrate over φ subsequently). The pho-

ton 3-momentum is ~k = (sin(θ), 0, cos(θ)). The δ3(~x)
distribution implies that the 3-momentum of the photon
is arbitrary, constrained only by the on-shell condition

and, finally, by energy conservation k0 = |~k| = ma. The
photon can, in principle, have two independent polar-

izations, satisfying ~ǫi · ~k = 0, which we can take to be
~ǫ1 = (− cos(θ), 0, sin(θ)) or ~ǫ2 = (0, 1, 0).

Consider first the case of the initial electron with spin
up transitioning to a final electron, also with spin up,

hence χi = χf =

(
1
0

)
. Then, we see that:

~ǫ1 · χ†
f~σχi = sin(θ) and ~ǫ2 · χ†

f~σχi = 0 (67)

Therefore, only a photon of polarization ~ǫ1 is emitted
in this case. So the amplitude for spin-up to spin-up is
therefore:

A↑↑ =
1

2
gaµBohrθ0k0 sin(θ)× 2πδ(ma − k0) (68)

The corresponding transition rate is:

Γ↑↑ =
1

4
(gaµBohrθ0)

2

∫
k20 sin

2(θ)d3k

(2π)32k0
(2πδ(ma − k0))

=
1

4
(gaµBohrmaθ0)

2

∫
ma

2(2π)2
sin3(θ)dθdφ

=
ma

12π
(gaµBohrmaθ0)

2 (69)

The emitted power is therefore:

P↑↑ = maΓ↑↑ =
1

12π
(gaµBohrm

2
aθ0)

2 (70)

This is identical to the classical case of eq.(65).

However, there is, for a free electron, the possibility of
a spin flip. Consider the case of the initial electron with
spin up transitioning to a final electron, with spin down,

hence χi =

(
1
0

)
, χf =

(
0
1

)
Now we see that

~ǫ1 · χ†
f~σχi = 0 and ~ǫ2 · χ†

f~σχi = i (71)

Therefore, only a photon of polarization ~ǫ2 is now emit-
ted. So the amplitude for spin-up to spin-down is there-
fore:

A↑↓ =
i

2
gaµBohrθ0k02πδ(ma − k0) (72)

The corresponding rate is:

Γ↑↓ =
1

4
(gaµBohrmaθ0)

2

∫
ma

2(2π)2
sin(θ)dθdφ

=
ma

16π
(gaµBohrmaθ0)

2 (73)

The emitted power is therefore:

P↑↓ = maΓ↑↓ =
1

16π
(gaµBohrm

2
aθ0)

2 (74)

Hence, in free space an electron will radiate with a total
power given by

Ptotal = P↑↑ + P↑↓ =
7

48π
(gaµBohrm

2
aθ0)

2 (75)

For an electron constrained to remain spin-up the power
is that of eq.(65).
In the following we will be interested in polarized elec-

trons, such as electrons in ferromagnets. Polarized elec-
trons are generally sitting in a polarizing B-field, and
there is therefore an energy cost in flipping the spin.
Hence, we are justified in dropping the P↑↓ rate in esti-
mates of aggregated electrons in magnetic materials emit-
ting dipole radiation. The quantum calculation, where
we restrict the final state to spin-up for an initial spin-
up state, gives identically the same power rate as the
classical calculation.
It is interesting that the axion field can also cause elec-

trons to absorb photons. We will not further consider this
“axion induced cooling” effect, but perhaps it, too, has
some interesting consequences.
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V. SOME QUANTITIVE ESTIMATES

Presently we give some quantitative estimates for pos-
sible detection schemes. We will briefly review the RF
cavity, but then focus exclusively on the possible detec-
tion of the radiation from coherent assemblages of mag-
nets or large scale magnetic fields. We plan a more de-
tailed treatment elsewhere [24].
We begin by defining a useful scaling parameter: η =

(fa/10
12GeV). Axion parameters and conversions to nat-

ural units are as follows:

decay constant fa η = (fa/10
12GeV)

axion mass ma 6.02× 10−15 η−1 GeV

axion wavelength λa
2π~
mac

20.6 η cm

axion frequency νa c/λA 1.46× 109 Hz

cosmic amplitude θ0 3.68× 10−19ρg

anomaly coefficient ga −2.26× 10−3 assumed

magneton µBohr CGS
e~

2mec
83.591 GeV−1

1 statvolt/cm (cgs) 6.92× 10−20 GeV2

1 watt 4.09× 10−15 GeV2

1 esla 6.92× 10−16 GeV2

Table I. Axion parameters and conversions.1 2

A. RF Cavity Energetics

Let us estimate the signal power of a resonant RF
cavity experiment. [This follows an estimate of Aaron
Chou [25] pertaining to the ADMX experiment]. The
ADMX microwave cavity is cylindrical and has a length
of L ∼ 102 cm, and radius of the cavity bore of R ∼ 25
cm, therefore a cross sectional area of π (25)2 = 1.96×103

cm2. The volume of the cavity bore is V = πR2L

1 We assume the galactic halo energy density ρg =
ρgalaxy/(0.3 GeV/cm3) ; the cosmic axion field amplitude,
a(t)/fa = θ0 cos(mAt+ φ), where φ is arbitrary. Note that θ0 is
independent of fa [17].

2 One must be careful, as usual, in the definition of the Bohr
magneton. In quantum electrodynamics we typically use the SI
system of units, in which e2SI/4π = α = 1/137, and field energy

density [Poynting vector] is (
−→
E 2 +

−→
B 2)/2 [

−→
E ×

−→
B ]. Note that

we define the Bohr magneton µBohr SI = eSI~/2mec in the SI
system (see eq.5). If we choose CGS units where e2CGS = α the

energy density [Poynting vector] is (
−→
E 2 +

−→
B 2)/8π [

−→
E ×

−→
B/4π]

and the Bohr magneton is now µBohr CGS = eCGS~/2mec.
The definitions in SI vs MKS differ by a familiar factor of√
4π, i.e., µBohr SI =

√
4πµBohr CGS . Put another way, our

above SI calculation of radiated power, eq.(65), yielded P =
(12π)−1(µBohr SI ...)

2 = (12π)−1(
√
4πµBohr CGS ...)

2. Had we
used CGS field normalizations and computed the Poynting vec-
tor directly we would have directly obtained the formula P =
(3)−1(µBohr CGS ...)

2.

∼ 1.96 × 105cm3. We will assume Q ∼ 105 , and an
applied constant external magnetic field B0 = 7 Tesla.
We see from eq.(45) that the oscillating signal fields in

an RF cavity are of order:

|−→B r| ∼ |−→E r| ∼ gaB0θ0Q ≈ 5.8× 10−12

(
Q

105

)
(cgs)

(76)
The total signal energy in the cavity is therefore:

E0 ∼ 1

8π
(gaB0θ0)

2×Q2V C ∼ 1.85×10−19
(
Q/105

)2
ergs

(77)
where C is a form factor parameterizing the shapes of
the cavity modes which we take to be C ≈ 0.7.
A damped driven simple harmonic oscillator of natural

frequency ω0, driving force F0 exp (iωt) , satisfies,

∂2t φ+ Γ∂tφ+ ω2
0φ = F0 exp (iωt) (78)

hence:

φ = Re(φ0 exp(iωt)); φ0 =
F0

(ω2
0 − ω2) + iωΓ

(79)

On resonance this will have an energy stored in a cycle
of E0 = |φ0ω0|2/2, and energy lost in a cycle (which must
be replaced in a steady state by the driving term), of

Elost =
(

2π
ω0

Γ
)
× 1

2 |φ0ω0|2 . We define:

Q = 2π
E0
Elost

=
ω0

Γ
(80)

This holds for an axion RF cavity with ω0 = ma.
Much of what limits Q in an RF cavity is resistive lost,

but we can define an accessible signal power output as:

P0 = ǫ
(ω0

2π

)
Elost = ǫ

maE0
Q

(81)

Using ma = 2π × 1.46(fa/10
12) GHz = 9.1× 109 Hz, we

have a signal power P0 = 8.48× 10−22(2ǫ) watts, where
our numerical coefficient corresponds to an efficiency of
ǫ = 1/2. 3

How challenging is the extraction of the signal from an
RF cavity? We think this is challenging. Note that the
signal power can be computed from the Poynting vector
flux through an effective “aperature,” i.e., a hole in the
cavity wall of area Aout from which a tranversely polar-
ized signal can be extracted, e.g., a “bung hole” in the
barrel. From Maxwell’s equations with an an ohmic cur-
rent in the cavity wall, one finds electromagnetic fields
that attentuate over a skin depth δ ∼ 1/

√
maσ/2, and

3 A. Chou [25] uses ma = 2π × 1.0 × 109 = 6.28 × 109 GHz,
Q = (1.3) × 105 , and a magnetic field derived from the total
magnetic field energy, UB = 4 MJ, or B0 = 7.16 Tesla, yielding
8.4× 10−22 watts, consistent with rescaling our above result.
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which have a small non-zero Poynting vector that is re-
duced by a factor of Q relative to the cavity energy den-
sity. The radiated power out of the cavity is then:

P ′
0 ∼ 1

Q

E′Aout

V
(82)

Given these two routes to computing the power, P0 and
P ′
0, we can compute the ratio of the aperature area, Aout

to the surface area, A0, of the cavity in terms of ǫ. We
readily find:

Aout

A0
≈ ǫ (83)

If we choose ǫ = 1/2, then Aout/A0 ≈ 0.5 which is
large, and implies that extraction of energy through a
physical aperature is limited, since most of the surface
area of the cavity is in the aperature hole! We can
extract signal through a non-perturbative, small aper-
ature area, of order Aout ∼ π(λa/4)

2, i.e., a “quarter-
wave aperature.” For the Poynting vector magnitude
eq.(82) apropos ADMX, we then have P ′

0 = πK(λa/4)
2 =

2.36× 10−24η2 (Q/106) watts, and ǫ = 4.7 × 10−3 . We
would thus take a significant hit in the output power with
a less perturbative aperature size.
Hence, if appropriate impedance matching of the cav-

ity to an output receiver can be acheived, with ǫ ∼ 1/2,
one would be able to attain power output of the order of
∼ 10−21 from an RF cavity. The remaining bottleneck is
then probing for a signal, which requires integrating and
analyzing the output and searching for a signal/noise ex-
cess for a given physical cavity tuning. This can be done
on the order of minutes, but then the cavity must be
retuned to a different resonant frequency and the signal
integration process repeated.

The signal fields in an RF cavity are driven by the par-
ticular solution to Maxwell’s equations with the axion,

which induces an oscillating electric field,
−→
E r = gaθ0

−→
B 0,

and a vanishing magnetic field
−→
B r = 0 throughout space,

including within the conducting cavity walls. The partic-
ular solution has vanishing Poynting vector and cannot

propagate, since
−→
B r = 0. The resonance is determined

by the presence of the conducting wall of the cavity. In

this wall the induced electric field gaθ0
−→
B 0 generates a

physical current. This physical current, in turn, stimu-
lates emission of radiation into the cavity, with the effect

that oscillating electric and magnetic modes,
−→
E ′

r and
−→
B ′

r,
are generated in the cavity. The net electric field at the

wall vanishes,
−→
E r(R) +

−→
E ′

r(R) = 0. At resonance the
induced fields are ∝ Q and the signal energy density is
∝ Q2. Finite conductance in the wall causes a slight

phase shift of
−→
E ′

r and
−→
B ′

r away from 90o by an amount
∝ 1/Q, leading to a the non-zero time-averaged Poynting
vector of order Q. This is what we depend upon for a
detectable signal.

Note that the bulk magnetic field, B0, within the inter-
nal volume of the cavity, generates the particular solution
there, but this is playing no role in the physics — only

the
−→
B 0 field in the walls of the cavity is relevant! It would

be sufficient to have the magnetic field localized only on
the wall and not filling the internal volume. Moreover,
this means that if we can apply a large magnetic field in
any conducting material (or dielectric) it will then radi-
ate observable power into the vacuum. This is the basis
of an array radiator we now discuss below.

B. Electric Dipole Radiation from Magnets

We now turn to the radiation produced by localized
magnetic fields, i.e., induced oscillating dipole moments,
in the cosmic axion field. Using the formula of eq.(65),

(where we include the factor of
√
4π into µBohr, or, use

the CGS formula, P = (gaθ0 µBohrm
2
a)

2/3 directly) we
can estimate the power emitted by a single electron in
free space, immersed in the cosmic axion field:

Pe ∼ 5.192× 10−82(η)−4 watts. (84)

This follows the dipole distribution of eq.(64).
While this is infinitesimal power, it will add coherently

for an assemblage of many polarized electrons within the
near-zone of the radiation field, e.g., in an approximately
a quarter wavelength volume, ∼ (λa/4)

3, which we will
define to be a “unit cell.” The unit cell can be viewed as
a Dirac δ-function source, and we can construct an array
of such sources.
For a mole of polarized electrons comprising a unit

cell, within the near-zone, the power becomes enhanced
to: PFe = N2

AvogadroPe ∼ 1.88×10−34(η)−4 watts. More
generally we can assemble many moles of polarized elec-
trons within the full quarter-wavelength volume to maxi-
mize output power. The quarter wavelength volume, de-
fined by the axion wavelength, is V0 ∼ (5.216 η cm)3 =
1.420× 102η3 cm3. For iron (Fe), of atomic mass A = 56
gm/mole and density ρ ∼ 7 gm Fe/cm3, we can therefore
assemble ρV0/A = 17.74η3 moles within a quarter wave-
length volume. Assuming one polarized electron per iron
atom, the power emitted by such a magnet is then of or-
der (ρV0/A)

2P = 5.93× 10−32η2 watts. Note the scaling
behavior in η is now controlled by overall the power per
electron, η−4, times the quarter wave volume squared,
(η3)2 for a net scaling ∝ η2.
Note that the product of the external dipole mag-

netic field with approximate volume it occupies, B0V0,
can be used in place of NµBohr in computing the
radiation fields. The Poynting vector is then K =
(12π)−1(gaθ0m

2
aB0V0)

2, valid up to a V0 of order a quar-
ter wavelength. The results using this formula are com-
parable to the coherent multi-electron calculation.
Neodymium-ferrite magnets can produce fields up to ∼

1.4 Tesla. A unit cell composed of this material (using 1.4
Tesla ×V0 in place of µBohrNAvogadroNm in the estimate
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for Fe) yields a power of about PNd ∼ 1.89 × 10−30η2

watts. Clearly, there is a significant advantage to larger
field strengths.
Bear in mind that arrays of unit cells spaced external

to the near-zone produce a Poynting vector flux that is
enhanced by N2, but this is focused within a solid angle
of ∼ 1/N , i.e., the net power output is not coherently
enhanced as N2 for larger arrays, but only as N . We
can, nonetheless, use an array of N unit cells to enhance
the overall power output of the array ∝ N and focus the
energy into a small solid angle to a receiver.
We can also consider a “unit slab cell.” This is plate of

conductor lying in the xy plane with a strong magnetic
field that is imbedded and polarized in the plane of the
conductor, e.g., in the ŷ direction. Such a plate will radi-
ate coherently in the directions normal to the xy surface,
in the ẑ direction, and the radiation will be electrically
polarized in the ŷ direction.
In Appendix A we derive the solution for the ra-

diation field from maxwell’s equations. The radiation

from the xy slab into the ẑ zenith direction is
−→
E r =

−gB0θ0 cos(mat−kz)ŷ and
−→
B r = gB0θ0 cos(mat−kz)x̂,

and the time averaged Poynting vector is given by:

P0 =
1

8π
(gB0θ0)

2Aẑ (85)

Here A is the surface area of the slab and a factor
of 1/2 arises from time averaging the Poynting vector.
Given that the thickness of the conducting surface ex-
ceeds the skin depth, the upward going radiation matches
the gB0θ0 particular solution in the skin of the conduc-
tor, which sources the emitted radiation. Note that here
we have assumed a negligible B0 above the plane of the
radiator. If B0 is constant in z above the plane of the
radiator, then the radiated power will acquire an inter-
ference term and eq.(85) will receive an overall factor of
(1 − cos(kz)). This oscillatory behavior in space could
prove useful in diagnosing a signal.
We will therefore define a “unit slab cell” as a 1 m×1m

conducting plate (e.g., copper) with a 1 Telsa field in the
plane of conductor. While this may be an unrealistic
construct experimentally, we can use the result to scale
to other parameters. We thus obtain for the unit slab
cell, Pslab = 8.27× 10−29 (B0/1 T )

2(Area/1m2) watts.
Essentially what we are doing presently is “opening

up” the RF cavity, and creating a simple radiator. We
will not be storing energy in a cavity, hence Q = 1 for
us. Instead, by constructing an array of slab cells we
would be exposing the largest possible conducting surface
area and coherently focusing the axion induced emitted
radiation toward a receiver antenna. which lies at some
point in the ẑ direction.
Such a plate may not be easy to construct, but we

can scale in area and field strength to match engineering
constraints. This could be constructed e.g., by placing
race-track magnetic windings wrapped around the plate
in the x̂ direction; alternatively, the plate could be seg-
mented into x̂ direction strips spaced by the solenoids

aligned in the ŷ direction. Segmentation of this config-
uration is tolerable provided the average large distance
(compared to an axion wavelength) is the regular square.
In summary:

Single electron Pe ∼ 5.192× 10−82(η)−4 watts.

Fe Unit Cell PFe ∼ 1.88× 10−34(η)−4 watts

1.4T Nd Unit Cell PNd ∼ 1.89× 10−30η2 watts

1m2 1T slab cell Pslab = 8.27× 10−29 watts

(86)

For magnets, we expect to encounter complications
due to the conductivity of the material, and the effects
of eddy currents that are generated there. Most high
field magnets are good conductors at GHz frequencies,
and one might expect that the electric field will be nul-
lified by the response in the material and hence in the
near-zone of the radiation field. However, if one inspects
eq.(56) one sees that the electric field is vanishing in the
near-zone, due to a cancellation of the electric dipole ra-
diation with the particular solution from the oscillating
axion field throughout space (analogous to the cancella-
tion in the wall of the RF cavity). The radiation field
in the near-zone is therefore predominantly due to the
curling magnetic component of eq.(57, 59). Therefore,
the emitted power results for aggregate magnets of or-
der a quarter wavelength in size is a collective effect and
localized eddy currents may not be an appreciable effect.
One might think that we could simply replace the

cylindrical magnets with small solenoids. Here the prob-
lem arises that the solenoidal B-field itself can only gen-
erate the non-propagating particular solution in the vac-
uum, and we require the interaction of this field in matter
to produce the radiation (this is akin to the RF cavity
case). The solenoidal magnet is clad with the conduct-
ing wire windings. The magnetic field can only penetrate
significantly into this material within the interior of the
solenoid, to generate a small cavity radiation (far below
resonance) within the magnet. The external field is weak
at the conducting material surface and does not tend
to lie within the skin depth of the windings there, and
we do not expect significant radiation to be generated
by a solenoid itself (this is equivalent to the fact that a
sealed RF cavity tends not to radiate externally if the
return flux at the external conducting surface is small).
Nonetheless, we could exploit strong field solenoids by
arraying them in the xy plane with a conducting mate-
rial strategically spanning the inter-magnet space (e.g.,
“fins”) in the xy plane. This will produce a coherent ra-
diation signal in the z direction, which we discuss below.
The number of unit-cell magnets in the array N then
becomes equivalent to the RF cavity Q.
Given an xy array of magnets with a polarization in

the x̂ direction, we can compute the discrete sum to ob-
tain the array radiation fields and Poynting vector. Al-
ternatively, we can take a continuous limit and the array
becomes equivalent to a slab of conductor with an imbed-
ded magnetic field in the x̂ direction. We can imagine
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using race-track solenoids wound around the slab, with
exposed segments of conductor as the radiation surfaces.
Other configurations can be investigated. In the follow-
ing we estimate the signal and integration time necessary
to detect in this kind of general xy array configuration.

C. Axion Signal in a 2-D Axion → Photon Antenna

We presently consider a schematic experimental con-
figuration. This is a variation on a scheme proposed by
[10]. The purpose of this is to provide an example of
how one might attempt to exploit axion induced electric
dipole radiation for detection in a broadband antenna.
This is a rough “initial pass,” and we will refine it else-
where [24].
Consider a smooth surface (a floor) which we define to

be the xy plane. In this plane we assume we have placed
a number N of the unit cells defined in the preceding
section. The power emitted into the ẑ direction is then
given by:

Pslab =
1

8π
(gaB0θ0)

2Atotal (87)

where Atotal = NA is the total exposed conducting sur-
face (and, as discussed above, if B0 is constant above
the plane of the radiator the result becomes Pslab =
1
8π (gaB0θ0)

2Atotal(1− cos(kz)) ).
Details of geometric focusing to a receiver antenna will

be developed elsewhere. It is not hard to see that the
beam of radiation from the xy array will be coherently
focused into a small solid angle and can be collected by
a parabolic antenna looking down on the array (A vari-
ation on this [10] would be to arrange the slab cells on
the surface of a mathematical sphere of radius R and col-
lect the signal at the focal point of the sphere; we think it
may be advantageous to use an independent parabolic an-
tenna and a planar array). The issues of antenna design
and optimization are beyond the scope of our present dis-
cussion. Let us crudely estimate presently the expected
signal sensitivity and baseline requirements.
Quantitatively, for an extremely optimistic “bench-

mark,” we’ll assume B0 = 10 Tesla and that we have
configured an array of 10× 10 slab cells into an effective
10m× 10m = 106 cm2 conducting surface. We therefore
we have an emitted power of Parray ≈ 8.27×10−25 watts
that is independent of η. This is, as we’ll see momen-
tarily, more than adequate for detection in a cryogenic
environment, and we will illustrate the scaling with ar-
ray area, temperature, and magnetic field to back down
to a more minimal experimental scale.
The signal received in our antenna will be electronically

filtered into a “pass-band” that we take to be of order
∼ 0.5ma to ∼ 1.5ma for a hypothetical ma = 1.46 ×
109 η−1 Hz. The pass-band is subdivided into frequency
bins ∆f . These bins are given by the natural linewidth of
the axion itself, defined by the so-called “axion Qa.” The
axion Qa ∼ 106 arises as a line broadening due to motion

within the galactic dark matter halo, which generates
fluctuations in the axion velocity, β ∼ 10−3. Hence, our
frequency bins are of order ∆f ∼ ma×β2 ∼ 103 Hz, and
we can select ∼ 106 such bins within our pass-band. The
pass-band signal is recorded by the radio receiver over a
long integration time and Fast Fourier Transformed. The
experiment can be repeated for other pass-bands (other
hypothetical ma’s).
The thermal noise power in a bin is given by the (one-

dimensional) Bose-Einstein distribution for thermal pho-
tons incident on the the receiver. The noise power in
a single frequency bin is Pnoise = 2T∆f . We will as-
sume cooling of the antenna (and other noise sources)
to T = 0.1oK corresponding to Pnoise = 4.02 × 10−21

watts. Hence our signal/noise ratio is Parray/Pnoise =
2.06× 10−4. This is small, but the number of noise pho-
tons random walks in the number of “samples,” t∆f ,
hence a signal can be observed with sufficient integration
time to reduce the fluctuations in the noise, “∆Nnoise” =
(Pnoise/ma)

√
t∆f , below the number of signal events,

“Nsignal” = (P0/ma)t∆f .
This is summarized by the Dicke Radiometer Formula

for t:

t = 2
P 2
noise

P 2
0∆f

(88)

If we plug in the results for the minimal array we obtain:

t = 9 hours (89)

We give a tabulation of integration times for various ar-
rays, each assumed to be 10m × 10m.

Array B0 power time

ND-Fe 1.4 Tesla 7.6× 10−27 watts 3.2 years

Solenoids 3 Tesla 6.8× 10−26 watts 56 days

10m × 10m 10 Tesla 8.27× 10−25 watts 9 hours

TABLE II. Signal integration times for planar arrays of
conductors, 10m× 10m.

For example, we can use fixed field ND magnets, with
magnets spaced a half-wavelengths to form a fixed field
array. We also consider 3T solenoids, forming a layer
under a conducting plane, where the return flux lies in the
plane (various other configurations can be considered).
Note the scaling in each case is:

t ∝
(
B0

B

)4(
10m× 10m

A

)2(
T

0.1oK

)2

(90)

For example, a 20m × 20m Nd-Fe magnet array we
would have an integration time reduced by 1/(4)2, or
2.4 months. Such an array would require ∼ 4× 104 mag-
nets of order ∼ 5 cm in scale length spaced by ∼ 10 cm.
Note that, despite the choice of quarter wavelength unit



15

cells magnets and spacing of order λa/2 for some η ∼ 1,
the signal in the ẑ direction is fairly broad-band and in-
dependent of η ∼ η0. In Appendix A we describe briefly
how the discrete array power approaches the slab power
in the continuum limit.

Note that if the xy array is a slightly spherical surface,
then dipole radiation will be focused to the focal point, lo-
cated at the mathematical center of the sphere. The cells
would be emitting dipole radiation to the focal point in a
common phase (see [10]). The use of a parabolic reflector
over a flab xy planar array has the equivalent common
phase relationship from the a flat array at the receiver
focal point. Nonetheless, one might exploit the combi-
nation of spherical array and semi-parabolic receiver an-
tenna.

With an observed signal in hand, one would be able
to exploit interference effects such as the ∝ (1− cos(kz))
modulation above the array in aconstant B0 field. It
may also be possible to exploit polarization of the radia-
tion and multiple receivers to reduce signal to noise and
cryogenic requirements. The signal will be electrically
polarized with the oreintation of the magnets or current,
while the noise is unpolarized.

This is a simple radiating system that does not de-
pend upon a resonance condition and does not require a
physical retuning of the array, and is fairly broadband.
A more detailed discusion of a conceptual array-based
axion search experiment will be given elsewhere [24].

VI. CONCLUSION

Our principal result is that the perturbative interac-
tion with the cosmic axion, though the anomaly, causes
an electron to acquire an oscillating electric dipole mo-
ment. The result is general: any static magnetic source
field in the presence of the cosmic axion will generate
an oscillating electric field, hence any magnetic moment
becomes an effective electric moment4.

As an explicit example, we demonstrate that classi-
cally that a stationary magnetic dipole field radiates as
an oscillating electric dipole field; the near-zone struc-
ture is that of a time dependent“Hertzian” electric dipole
source of frequency ma. Likewise, the electron will have
an OEDM that is proportional to its spin, and will ex-
perience electric dipole interactions with applied electric
fields. In addition we have the appearance of the nonlocal
term, the analogue of the transverse current in radiation
gauge. This nonlocal effect is present in any axion elec-
tromagnetic interaction, such as the case of fields induced
by the axion and applied magnetic fields in RF cavities

4 As noted in ref.[1], the converse is not true,i.e., a static electric
field does not become an oscillating magnetic field, a consequence
of the fact that the cosmic axion field effectively breaks Lorentz
invariance.

(see Section V.). It does not affect the oscillating elec-
tric dipole interaction of the electron with a source free
electric field, i.e.as in radiation or cavity modes.
We have obtained an induced oscillating electric dipole

moment for the electron, proportional to the magnetic
moment, 2gaθ0 cos(mat)µBohr. The result is quantita-
tively ≈ 3.2 × 10−32 × 10−32(ga/10

−3) cos(mat) e-cm.
The result is two orders of magnitude greater than the
typical result expected for the nucleon, dN ∼ 3.67 ×
10−35 cos(mat) e-cm [21], about four orders of magnitude
from the limit on the constant electric dipole moment of
the electron, de ≤ 8.7× 10−29 e-cm, [5].
The result is a general low energy theorem and applies

to any static magnetic system. Axion electromagnetic
anomaly effects are essentially local oscillating dual ro-
tations that lead to potentially observable signals. The
axion anomaly perturbs the system by locally producing
a physical, infinitesimal, time dependent dual rotation of

δ
−→
E = gaγγθ0(t)

−→
B , effectively rotating a magnetic mo-

ment to an oscillating electric dipole moment. The dual-
ity of axion electrodynamics also implies the absence of
induced oscillating magnetic moments from static electric
dipoles.
The requirement of an explicit appearance of ∂tθ(t) in

physical quantities is a source of confusion to some peo-
ple. This issue is not exclusive to OEDM’s, but also arises
at the classical level in well-known solutions to axion-
Maxwell’s equations, such as in conventional RF cavities.
As shown in Section V., in an RF cavity with an applied

classical constant background field ~B0, an oscillating elec-

tric field develops that has the form ~E ∝ θ̃(t) ~B0. One

does not see the explicit ∂tθ(t) in the physical ~E, so one
might wonder how it turns off in the ma → 0 limit? The

Maxwell equations for ~E and ~B are of the linear, first
order, inhomogeneous form, and must therefore have a

boundary condition. If one is careful, therefore, one finds
that the electric field is proportional to:

θ̃(t) =

∫ t

t0

dτ ∂τθ(τ) = θ(t)− θ(t0) (91)

Hence, θ̃(t) → 0 when ∂tθ(t) → 0, owing to the boundary

condition. So, when one measures ~E(t) in an RF cavity
one is only measuring its value relative to an earlier value
~E(t0). In the present case of OEDM’s, however, this
nonlocality is more subtle, but in the low energy zero–
electron recoil limit of interest it reduces back to ∝ θ(t).
The existence of such phenomena may imply a number

of potentially sensitive venues. The collective magneti-
zation of any subtance, e.g., polarized ferromagnets such
as iron or strong rare earth magnets such as neodymium-
ferrites, will acquire induced oscillating electric dipole
moments that may provide accessible signals.
We have presented estimates for some xy array config-

urations that probe the coherent radiation generated by
an assemblage of a large number of polarized electrons
or electruic currents. Certainly other geometries can
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be considered, including 1D and even 3D “crystal” ar-
rays. These configurations can be built out of “unit cells”
which are quarter (axion) wavelength volumes composed
of magnetic materials. We find that reasonable labora-
tory scale configurations, particularly the 2-D large array,
may provide detectable coherent power outputs in excess
of ∼ 10−25 watts. These arrays have signal/noise integra-
tion times that shrink inversely with increasing magnetic
field strength as ∝ B−4 and area as ∝ A−2. These ar-
rays seem potentially advantageous in probing the axion
“sweet spot” of 1010 ≤ fa ≤ 1012 GeV. These are very
preliminary considerations, but appear worthy of further
more detailed analysis.
We note that our present paper and [1] has not been

without some controversy. In part, in some earlier ver-
sions we mis-stated how the decoupling of the axion
works for the OEDM in the Introduction. Hoswever, in
[26] a calculation was done in a pure Coulomb poten-
tial, which yielded zero and was used to argue that our
overall result is zero. As we have shown explicitly, the
Coulomb potential part of the result is always a total
divergence, and indeed vanishes. The OEDM is intrinsi-
cally time dependent and is nonzero as an action. The
axion decoupling has been thoroughly explored in the
present paper and this issue has now been resolved fa-
vorably for the present work and [1], (see [27]). We have
explicitly addressed the criticism that our result did not
display decoupling. in the ma → 0 limit. The decoupling
is present, even in the radiation formula of eq.(1), but it
is not always manifest, and is subtle in a manner similar
to the anomaly itself, as discussed above in Section III.
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Appendix A: Slab Radiator Solution

Here we give the solution for the electric dipole radia-
tion form a conducting slab with an imbedded magnetic
field. The power from a slab array can be estimated from
the continuum limit of a discrete array of magnets. The
emitted power from a discrete array of N magnets is of
order:

P = g2a (µBohr)
2
m4

aθ
2
0N (A.1)

The axion Compton wavelength is ma ∼ (2π/λ). We can
identify the magnetic field in the discrete array with

−→
B 0 ∼ µBohr (2π/λ)

3 ∼ µBohr (ma)
3

(A.2)

and the discrete array power is then:

P ∼ g2A

(−→
B 0

)2
m−2

a θ20N

∼ g2A

(−→
B 0

)2
θ20 (λ/2π)

2
N ∼ g2A

(−→
B 0

)2
θ20 × (area)

(A.3)

Let us derive this result carefully from Maxwell’s equa-
tions. The sourced Maxwell equation is:

−→∇ ×−→
B r − ∂t

−→
E r = g

−→
B 0∂tθ +

−→
J (A.4)

where
−→
B 0 is a constant background magnetic field; θ is

oscillating axion field and
−→
E r and

−→
B r are oscillating re-

sponse fields.
We assume we have vacuum for x < 0 and a conducting

medium, such as copper, for x > 0.
−→
B 0 and θ perme-

ate the vacuum and the conductor. The magnetic field,−→
B 0 = B0ẑ is parallel to the plane of the conductor. We
assume Ohm’s Law in the conductor

−→
J = −σ−→E (A.5)

Introduce a vector potential in radiation gauge for the
response fields:

−→
E r = −∂t

−→
A Br =

−→∇ ×−→
A

−→∇ · −→A = 0 (A.6)

hence:

∂2t
−→
A −∇2−→A = g

−→
B 0∂tθ +

−→
J x > 0 (A.7)

∂2t
−→
A −∇2−→A = g

−→
B 0∂tθ x < 0 (A.8)

The axion induced particular solution is:

−→
E 0 = −g−→B 0θ = −∂t

−→
A 0 hence, ∂2t

−→
A 0 = g

−→
B 0∂tθ

(A.9)

Note
−→∇ × −→

E r0 = g
−→∇ × −→

B 0 = 0 since
−→
B 0 is assumed

constant (or source free). Hence, ∇2−→A 0 = 0 and
−→
A0 is

non-propagating and constant in space (curl-free).
It is convenient to complexify the fields and identify

the physical fields with the real parts. We write θ =>

θ0 exp (imat) , then g
−→
B 0∂tθ = imag

−→
B 0θ0 exp (imat), and−→

A 0 = −ig−→B 0θ0/ma exp (imat). The equation of motion
becomes:

∂2t
−→
A −∇2−→A = imag

−→
B 0θ0 exp (imat) + σ∂t

−→
A (x > 0)

∂2t
−→
A −∇2−→A = imag

−→
B 0θ0 exp (imat) (x < 0) (A.10)

−→
A is composed of homogenous propagating and non-
propagating solutions. Define:

−→
A =

−→
P eimat +

−→
Heimat+k′x − ig

−→
B 0θ0
ma

eimat (x > 0)

−→
A =

−→
Keimat+kx − ig

−→
B 0θ0
ma

eimat (x < 0) (A.11)
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We introduce a parameter: γ = ma/σ and we will work
in the limit of large conductance, γ << 1. Substituting
into the equations of motion we have:

−
(
m2

a + im2
a/γ
)−→
P = g

−→
B 0θ0(ma/γ)

−
(
m2

a + im2
a/γ − k′2

)−→
H = 0

−
(
m2

a − k2
)−→
K = 0 (A.12)

Hence:

−→
P =

ig
−→
B 0θ0

ma (1− iγ)

k′ = ±ma

√
1 + i/γ

k = ma (A.13)

The sign of k′ is determined by the asymptotic bound-

ary condition that
−→
H → 0 as x → ∞. The boundary

conditions at x = 0 match the fields and their spatial
derivatives on L and R:

ig
−→
B 0θ0

ma (1− iγ)
+
−→
H =

−→
K

√
1 + i/γ

−→
H =

−→
K (A.14)

whence:

−→
H =

ig
−→
B 0θ0

ma (1− iγ)
(√

1 + i/γ − 1
)

≈ √
γ
ig
−→
B 0θ0
ma

e−iπ/4 + γ
g
−→
B 0θ0
ma

−→
K =

√
1 + i/γH ≈

(
ig
−→
B 0θ0
ma

+
√
γ
ig
−→
B 0θ0
ma

eiπ/4

)

−→
P =

ig
−→
B 0θ0

ma (1− iγ)
≈ ig

−→
B 0θ0
ma

− γg
−→
B 0θ0
ma

(A.15)

We therefore have the resulting solution for small γ << 1:

−→
A ≈

(√
γeiπ/4 + γ

) g−→B 0θ0
ma

e
imat+i ma√

2γ
x− ma√

2γ
x

−γ g
−→
B 0θ0
ma

eimat (x > 0)

−→
A ≈ ig

−→
B 0θ0
ma

(
1 +

√
γeiπ/4

)
e(ima(t+x))

− ig
−→
B 0θ0
ma

e(imat) (x < 0) (A.16)

We thus see, in the γ → 0 limit, the overall amplitude of−→
A → 0 for x > 0, and the propagating component atten-
uates into the conductor with a skin depth of 1/

√
maσ.

For x < 0, in the γ → 0 limit, we see that the induced
propagating plane wave has an overall amplitude that has
become locked to the magnitude of the non-propagating
axion induced particular solution. For x = 0 w see that
the solution approaches the usual conducting boundary

condition,
−→
E (x = 0) = 0

The main point is to ilustrate that a conductor con-
verts the non-propagating particular solution into de-
tectable radiation. This is how the walls of the RF cavity
pump radiation into the volume; the magnetic field in the
empty volume plays no role, only its permeating the walls
induces the signal. This also illustrates how the slab unit
cell acts as a radiation source.
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